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Summary

The brachial artery flow-mediated dilation test (FMD) 
is the noninvasive gold standard used to test endothe-
lial function. Reduced FMD is an early event in the de-
velopment of atherosclerosis and provides a marker for 
predicting future cardiovascular disease events. How-
ever, the potential for this promising test is limited by 
poor reproducibility. Three major limitations associ-
ated with standard FMD methodology account for the 
majority of the poor reproducibility. Firstly, expressing 
FMD as a percentage limits statistical power. Sec-
ondly, studies often fail to account for the stimulus, i.e., 
shear stress. Lastly, peak diameters in response to re-
active hyperaemia are short-lived and, therefore, hard 
to capture. To compensate for these limitations, we 
suggest that endothelial function be estimated using 
shear rate: diameter dose response curves. The use of 
dose-response curves could potentially improve meas-
urement reliability and validity.
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Introduction

The brachial artery flow-mediated dilation (FMD) test 
is the noninvasive gold standard used to test endothe-
lial function [1]. Ultrasound is used to image the artery 
and measure the dilatory response to blood flow-in-
duced increases in shear stress. Typically, a pneumatic 
tourniquet is placed around the forearm and inflated to 
a supra-systolic blood pressure for 5 minutes [1]. Rapid 
deflation of the tourniquet leads to increased blood flow 
(reactive hyperaemia) to the oxygen-starved forearm 
muscles, with a subsequent increase in flow through 
the upstream brachial artery. The resultant flow-in-
duced elevation in shear stress stimulates endothelial 

cell release of vasodilators, most 
notably nitric oxide (NO), with sub-
sequent smooth muscle cell relaxa-
tion [2, 3]. FMD is typically ex-
pressed as the percentage increase 
in brachial artery diameter from 
baseline to peak dilation (fig. 1). 

Reduced FMD is an early event in the development of 
atherosclerosis [1] and provides a marker for predict-
ing future cardiovascular disease events [4]. However, 
the potential of this promising test is limited by poor 
reproducibility [5]. Three major limitations associated 
with the standard FMD methodology account for most 
of the poor reproducibility.

Firstly, FMD expressed as a percentage limits sta-
tistical power [6]. FMD can be calculated as: 1) post-
only score, 2) change score, 3) fraction, or 4) co-varied 
for resting diameter. A simulation study found the 
analysis of covariance (ANCOVA) approach (i.e., option 
4 above) had the greatest statistical power, with per-
centage change from baseline having the lowest statis-
tical power [6]. Expressing FMD as a percentage effec-
tively squares the variation due to resting diameter, 
and may result in a not normally distributed statistic 
from normally distributed data. Using resting diame-
ters as a covariate is most likely to adjust for the bias 
due to baseline values [6–8].

Secondly, most studies still fail to account for the 
stimulus, i.e., shear stress [9]. Shear stress is primar-
ily related to movement of red blood cells close to the 
endothelial layer (represented by bottom and top-most 
arrows in fig. 4.1b). As fluid particles “travel” parallel 
to the vessel wall, their average velocity increases from 
a minimum at the wall to a maximum value at some 
distance from the wall, resulting in a gradient of veloc-
ities that form concentric circles in the lumen of the 
vessel (fig. 4.1a). This shearing stress therefore acts at 
a tangent to the wall to create a frictional force at the 
surface of the endothelium. Mitchell et al. [10] demon-
strated that reduced FMD may be attributable not only 
to impaired NO bioavailability, but also to a lesser 
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“true” response. Alternatively, a more accurate assess-
ment of endothelial function can be achieved by esti-
mating shear rate-diameter dose-response curves.

Hypothesis

In the biological sciences, dose-response curves are 
widely used to understand and model the response of a 
living organism to a particular stimulus. A dose-re-
sponse curve is used to relate the magnitude of a 
stressor (e.g., shear stimulus) to the response of the re-
ceptor (e.g., arterial dilation). This approach can be 
used to assess endothelial function. The following 
questions need to be addressed prior to utilising dose-
response curves: 1) How should we manipulate the 
dose (i.e., shear stimulus)? 2) How should we estimate 
the shear stimulus? and 3) How should we express 
dose-response outcomes?

Manipulating the shear stimulus using ischaemia
The shear stimulus can be manipulated using progres-
sive durations of forearm ischaemia. Since one is assess-
ing a physiological system, an appropriate range of 
stimuli should create an S-shape dose-response curve. 
Assuming resting diameter can be used to represent 
the baseline response, at least five progressive dura-
tions of ischaemia would be needed: one duration ≤2 min 
to estimate the onset of the reactive portion of the 
curve (the slope), two durations (e.g., 4 min and 6 min) 
to estimate the slope, and two durations (e.g., 8 min 
and 10 min) to estimate the plateau (see fig. 3). A 
10-minute period of ischaemia has previously been 
shown to induce a maximal diameter response [12–14]. 
Repetitive reactive hyperaemia protocols have been 
found to have no effect on FMD measurements [15, 16]. 
In a young, healthy population, arterial diameter re-
turns to baseline within three minutes following is-
chaemia (unpublished observations). 

Shear stress calculation
Clinical studies in humans, including FMD studies, 
typically estimate shear stress by employing a simpli-
fied mathematical model based on Poiseuille’s law, 
where shear rate equals:

Shear rate (γ) = 2(2+n)v
        d

where d is the internal arterial diameter, v is time ave-
raged mean blood velocity, and n represents the shape 
of the velocity profile. (For a fully developed parabolic 
profile, n is 2.) Poiseuille’s law assumes that: 1) The 
fluid (blood) is Newtonian. 2) Blood flows through a ri-
gid tube. 3) The velocity profile is parabolic. And 4) 
Whole blood viscosity represents viscosity at the vessel 
wall and is linearly proportional to shear rate. First, 
although blood is non-Newtonian, the effect of the non-
Newtonian behavior does not appear to be pronounced 

shear stimulus. Fortunately, the ultrasound technol-
ogy used to conduct the FMD test can also provide es-
timates of shear stress. 

Thirdly, the peak diameter in response to reactive 
hyperaemia is short-lived and, therefore, hard to cap-
ture (see fig. 1). Variance in peak diameter measure-
ments may be attributable to differences in the stimu-
lus (i.e., shear stress), or measurement error (fig.2). 
Variance due to change in the stimulus can be ac-
counted for by normalising FMD to shear stress. To  
account for measurement error, according to laws gov-
erning regression to the mean [11], the FMD test would 
need to be repeated multiple times in order to obtain a 

Figure 1 
Shear rate and diameter responses to 5 minutes ischaemia. The horizontal line 
represents resting diameter. Flow-mediated dilation (FMD) is typically represented 
as the peak percentage increase in diameter above rest. Note that the peak 
diameter occurs at ~40 sec whereas the bulk of the hyperaemic (shear) response 
occurs within the initial 20 sec.

Figure 2
Flow-mediated dilation (FMD) measurement variance. Open circles represent 
multiple FMD measurements (hypothetical data). The closed circle represents mean 
FMD. Variance due to change in stimuli (shear rate) can be accounted for by 
normalising to shear rate. Variance due to measurement error can be minimised by 
multiple FMD measurements (or by calculating a shear rate: diameter dose 
response curve).
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Manipulating the shear stimulus using hand 
warming and handgrip exercise
To overcome the short-lived reactive hyperaemia re-
sponse, and hence short-lived change in diameter, en-
dothelial function can be evaluated by using sustained 
increases in shear stress, e.g., through local hand 
warming and low-intensity handgrip exercise [24, 26, 
29, 30]. This approach would also allow for more accu-
rate assessment of shear rate.

Local warming of the skin induces localised dila-
tion that is graded with skin temperature, with the 
maximal dilation and blood velocity response occurring 
at 42 °C [31, 32]. Warming of the skin is thought to in-
crease blood flow locally without significant systemic 
autonomic influence [31–34]. The mechanism respon-
sible for this response is not fully understood, but en-
dothelial NO. production is thought to play a central 
role [33–35]. There is evidence to suggest that this re-
sponse may be produced through a neurogenic reflex 
with NO serving a permissive role to some unknown 
neurotransmitter [36]. Under controlled conditions, 
gradually increasing skin temperature can induce suc-
cessive, sustained, and reproducible increases in local 
blood flow [24, 30, 32, 37]. To ensure that the brachial 
artery is not directly heated, the forearm has to be en-
cased within an airtight container. The skin tempera-
ture of the bicep should be continuously monitored.

Rhythmic handgrip exercise can also be used to in-
crease blood flow. Handgrip exercise increases meta-
bolic demand of the forearm. The role of the endothe-
lium in exercise-induced vasodilatation is not clear. A 
possible limitation is the potential for recruitment of 
the bicep muscle, thereby directly activating the region 
of interest. The exercise intensity has to be low enough 
to prevent synergistic muscle activity. Electromyogra-
phy can be used to ascertain that the bicep remains in-
activated. Shear rate has been manipulated using this 
approach [38]; subjects were able to squeeze a hand-
grip ergometer to 10% of their maximal voluntary con-
traction up to twice every 3 seconds without recruiting 
the bicep.

Recently, we found that the relationship between 
shear rate and vasodilatation is comparable when 
shear rate is increased transiently (ischaemia-induced) 
or in a sustained manner (local hand warming and 
handgrip exercise-induced) [38]. This is consistent 
with a recent study by Pyke et al. [16], who similarly 
found a significant relationship between ischaemia-in-
duced FMD and handgrip exercise-induced FMD when 
the FMD responses were normalised to shear rate. 
Consideration has to be given to the mechanism(s) in-
ducing FMD; the mechanisms regulating vascular tone 
may be dependent on the duration of the shear stimu-
lus [29, 39–42], with FMD in response to sustained 
shear rate likely being less NO-dependent [43]. None-
theless, the endothelium is still thought to primarily 
govern vasodilation under steady-state shear rate con-

in large arteries [17]. Second, blood vessels are disten-
sible, meaning that wall shear rate may be ~30% less 
in a distensible artery as compared with a rigid tube 
[18]. Third, in arteries, the velocity profile will gener- 
ally not develop to a full parabola as a consequence of 
flow unsteadiness and short vessel entrance lengths. 
However, in the brachial artery, under resting condi-
tions, the underestimation is less pronounced – likely 
due to a more parabolic velocity profile in this artery, 
i.e., n (velocity profile) is closer to 2 [19]. Though, this 
may only be true for resting conditions; occurrence of 
flow turbulence is possible during reactive hyperaemia 
[20]. Third, blood viscosity exhibits low intra-subject 
variability [21], particularly among a healthy, homoge-
neous group. Shear rate has been used as a surrogate 
measure of shear stress in a number of previous stud- 
ies [21–25].

Calculating the appropriate shear stimulus
Ischemia results in a 2-phased hyperaemic response 
(see fig. 1): 1) an abrupt, transient, peak increase in 
shear, and 2) a more steady return to baseline. Calcu-
lating a shear integral has been shown to better ex-
plain variation for change in diameter (i.e., FMD) than 
when using the peak shear response [26–28]. Shear 
rate has been calculated by integrating to either a fixed 
duration which accounts for the bulk of the shear stim-
ulus [26, 28], or by integrating to the time of peak dia- 
meter [27]. However, it may be proposed that inte- 
grating to the time of peak diameter is less likely to 
capture the true shear stimulus, since the bulk of the 
hyperaemic [shear] response typically occurs during 
the initial 20–40 seconds following ischaemia, whereas 
the peak diameter occurs at approximately 45–60 sec-
onds. Furthermore, measurement error may be intro-
duced when manually identifying the time of peak dia- 
meter. We propose that a fixed integral of 30–40 sec-
onds is used to calculate the shear stimulus.
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Figure 3
Theoretical shear rate-diameter dose-response curve. Six data points are shown: 
baseline, and the responses to 5 durations of ischaemia.
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the degree of arterial stiffness [12, 46–48]. To estimate 
nonbiased outcomes each parameter (slope, EC50, and/
or maximum) of interest should be covaried to baseline 
diameter [6–8].

Statistical analysis
Shear rate: diameter slopes for each subject can be  
estimated by regressing shear rate against diameter 
for each condition (i.e., each duration of ischaemia or 
intensity of heat/exercise). Between- or within-group 
slopes can then be compared using the general linear 
model approach, e.g., t-test or analysis of variance. 

An alternative is to normalise the FMD response 
(i.e., change in diameter) to shear using hierarchical 
linear modeling (HLM) [49]. HLM is a more advanced 
form of multiple linear regression that accounts for hi-
erarchical (i.e., successive interrelated levels) effects 
on the outcome variable. This is accomplished in HLM 
by including a complex random subject effect which can 
appropriately account for correlations among the data. 
This approach models different patterns in the data by 
allowing for the intercepts (initial diameter) and slopes 
(shear rate-diameter) to randomly vary. A third level 
may also be specified; this may be the specification of 
groups (e.g., to delineate differences in endothelial 
function), an intervention or a modifiable risk factor 
such as smoking. This approach has been used to com-
pare upper vs lower extremity arterial health in per-
sons with spinal cord injury (SCI) [47], to assess im-
provements in arterial health following electrical stim-
ulation-evoked resistance exercise therapy in persons 
with SCI [50], to look at the effects of occasional ciga-
rette smoking on arterial health [28], to examine the 
relationship between flow turbulence and FMD [20], to 
determine whether velocity acceleration is an impor-
tant contributor to FMD [51], and to assess whether 
peak- and time-integrated shear rates independently 
predict FMD [38]. The disadvantage of this approach is 
that multiple stimuli (preferably ranging from mini-
mal to maximal shear stimuli) are required to generate 
a reliable shear diameter relationship.

Advantages
The use of parameters from dose-response curves would 
offer a number of advantages over standard FMD meth-
odology: 1) the stimulus (shear) is directly accounted for 
in a manner that does not violate statistical assump-
tions, 2) improved sensitivity, i.e., the slope (endothelial 
function) can be clearly identified (with the standard 
FMD test it cannot be ascertained at which point on the 
slope endothelial function is being estimated), 3) im-
proved reliability, i.e., the dose-response slope is more 
resistant to measurement error when compared to a 
single measurement [11], and 4) more information is 
provided, i.e., the slope isolates endothelial function 
whereas the maximum response more likely reflects the 
degree of arterial stiffness [12, 46–48].

ditions. For instance, hand warming has no effect on 
brachial artery diameter when flow is not allowed to 
rise [22, 24, 29]. Furthermore, pharmacological block-
ade of the autonomic nervous system has no effect on 
radial artery FMD in response to hand warming [29], 
consistent with animal studies showing that FMD is 
preserved after surgical or pharmacological denerva-
tion [44, 45]. 

Expressing dose-response outcomes
A standard dose-response curve is defined by four pa-
rameters: the baseline response (Bottom), the maxi-
mum response (Top), the slope, and the stimulus that 
provokes a response halfway between baseline and 
maximum (EC50). The slope, which would represent 
the change in diameter per one unit change in shear 
rate, is likely to be the parameter which most accu-
rately reflects endothelial function. An alternative is to 
use the EC50; however, this parameter requires that 
the baseline and maximum are adequately character-
ised. The maximum response would most likely reflect 
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Figure 4
Endothelium-dependent dilation. (1) Blood flowing through an artery creates a 
shearing stress at the endothelial surface. A composite of superimposed concentric 
circles is shown in 1a (i.e., transverse plane) to correspond with the gradient of 
increasing RBC velocity from the periphery to the center of the lumen. RBC velocity 
is represented as a parabola (i.e., longitudinal plane) in 1b using the same color 
coding as in 1a. The magnitude of the parabola (left to right) corresponds with the 
gradient of increasing RBC velocity from the periphery to the center of the lumen. 
(2) Shear stress-induced deformation of the endothelial cells is detected by 
mechanoreceptors on the cell membrane. (3) In response to mechanotransduced 
shear stress, a signaling cascade results in the production of NO, PGI2 and EDHF. 
(4) The vasodilators diffuse cross the interstitial space and enter the vascular 
smooth muscle cells. (5) A signaling cascade is initiated which lowers Ca2+ 
concentration and results in smooth muscle cell relaxation (i.e., vasodilation). Ca2+ 
= calcium; eNOS = endothelial NO synthase; COX-2 = cyclooxygenase; EDHF = 
endothelial-derived hyperpolarising factor; NO = nitric oxide; PGI2 = prostaglan-
dins; RBC = red blood cell.
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